Introduction to Space Physics Learning Notes
2. PHYSICS OF SPACE PLASMAS
2.1 INTRODUCTION
- Plasmas in space atr extremely tenuous gases of ionized particles.
- on average, there is no net charge
- the density is too low \(\rightarrow\) the encouters between
particles can be ignored
- we need only consider the responses of the charged particles to the force fields
2.2 SINGLE-PARTICLE MOTION
- Maxwell's Equations are as follows. In Space Physics, \(\mathbf{D}=\epsilon_0\mathbf{E},\mathbf{H}=\frac{\mathbf{B}}{\mu_0}\)
(SI Units), \(\mathbf{D}=\mathbf{E},\mathbf{H}=\mathbf{B}\)
(Gaussian Units)
- \(\mathbf{B}=\nabla \times \mathbf{A}\ ;\
\mathbf{E}=-\nabla\phi-\frac{\partial \mathbf{A}}{\partial t}\)
- \(\phi\) : scalar potential
- \(\mathbf{A}\) : vector potential
- \(m\frac{d\mathbf{v}}{dt}=q\mathbf{E}+q\mathbf{v}\times\mathbf{B}+\mathbf{F_g}\),
\(\mathbf{F_g}\) is nonelectromagnetic
forces (such as gravitational forces)
- \(\mathbf{F_g}=0,\mathbf{E}=0,\mathbf{B}=B\vec{e_z}\)
:
- \(m\dot{v_x}=qv_y B\ ;\ m\dot{v_y}=qv_x B\)
- \(\ddot{v_j}=-(\frac{qB}{m})^2v_j=-\Omega_c^2v_j\ \ \ \ (j=x,y\ ; \ \Omega_c=\frac{qB}{m})\)
- cyclotron/Larmor radius : \(\rho_c=\frac{v_{\perp}}{\Omega_c}=\frac{m v_{\perp}}{qB}\)
- circular motion in the uniform magnetic field does not change particle's kinetic energy : \(m\frac{d\mathbf v}{dt}\cdot \mathbf{v}=\frac{d(\frac 1 2 mv^2)}{dt}=q\mathbf{v}\cdot (\mathbf{v\times B})=0\)
- \(\mathbf{F_g}=0,\mathbf{E}\neq0,\mathbf{E\cdot
B}=0,\mathbf{B}=B\vec{e_z}\) :
- the particle drift velocity : \(\mathbf{u_E}=\frac{\mathbf{E\times B}}{B^2}\)
- for arbitrary forces : \(\mathbf{u_F}=\frac{\mathbf{F\times B}}{qB^2}\)
- a gradient in the field strength in the direction perpendicular to
\(\mathbf{B}\) :
- \(\mathbf{u_g}=\frac{1}{2}mv_{\perp}^2\mathbf{B\times}\frac{\nabla \mathbf{B}}{qB^3}\)
- \(\mathbf{F_g}=0,\mathbf{E}=0,\mathbf{B}=B\vec{e_z}\)
:
4. THE SOLAR WIND
4.1 A QUICK SURVEY OF SOLAR-WIND PROPERTIES
- THREE LISTS
- the solar wind that blows past the earth is hot, tenuous and
fast-moving by terrestrial standards
- it consists largely of ionized hydrogen, with a small admixture of ionized helium(5%) and fewer ions of heavier elements
- the pressure in an ionized gas with equal proton and electron
density \(n\) :
- \(p_{gas}=nk(T_p+T_e)\)
- \(T_p,T_e\) are the proton and electron temperatures
- \(p_{gas}=30\ pico\ pascals(pPa)\)
- \(p_{gas}=nk(T_p+T_e)\)
- sound waves in an ionized gas with pressure \(p_{gas}\) and mass density \(\rho=n(m_p+m_e)\) travels at a speed :
- \(c_s=\{\frac{\gamma
p}{\rho}\}^{\frac{1}{2}}=\{\frac{\gamma
k}{m_p+m_e}(T_p+T_e)\}^{\frac{1}{2}}\)
- \(\gamma=\frac{C_p}{C_v}\), for hydrogen : \(\gamma=\frac{5}{3}\)
- \(c_s\approx60\ km\cdot s^{-1}\)
- solar-wind flow is highly supersonic (\(400\ km\cdot s^{-1}\))
- \(c_s=\{\frac{\gamma
p}{\rho}\}^{\frac{1}{2}}=\{\frac{\gamma
k}{m_p+m_e}(T_p+T_e)\}^{\frac{1}{2}}\)
- the magnetic field can be thought of as exerting a pressure :
- \(p_{mag}=\frac{B^2}{2\mu_0}\approx 15\ pPa\)
- comparable to the gas pressure
- indicate that magnetic effects will be about as important as pressure effects in the solar-wind plasma
7. IONOSPHERES
7.1 THE UNDERLYING ATMOSPHERE
- The density \(n_n\) of a
constituent of the upper atmosphere obeys hydrostatic equation:
- \(n_n m_n
g=\frac{dp}{dh}=-\frac{d}{dh}(n_n kT_n)\)
- shows a balance between the vertical gravitational force and the thermal-pressure-gradient force
- \(m_n\) : molecular or atomic mass
- \(h\) : altitude
- \(p=n_nkT_n\) : thermal pressure
- \(n_n m_n
g=\frac{dp}{dh}=-\frac{d}{dh}(n_n kT_n)\)
- assume that \(T_n\) is independent
of \(h\) :
- \(n_n=n_0\exp\frac{-(h-h_0)}{H_n}\)
- \(H_n=\frac{kT_n}{m_n g}\) : the scale height of the gas
- \(n_0\) : the density at the reference altitude \(h_0\)
- the lightest molecules and atoms have the largest scale heights
- \(T_n\) may depend on \(h\) the equation is not enough
- \(n_n=n_0\exp\frac{-(h-h_0)}{H_n}\)
7.2 ION PRODUCTION
7.2.1 Photoionization
simplifying assumption \(\rightarrow\) Chapman Theory
9. THE MAGNETOPAUSE, MAGNETOTAIL, AND MAGNETIC RECONNECTION
9.1 THE MAGNETOPAUSE
- the magnetopause : the upper boundary of the atmosphere
- It separates the geomagnetic field and plasma of terrestrial origin from solar-wind plasma.
Introduction to Space Physics Learning Notes
https://oybdooo.github.io/2023/02/15/Introduction-to-Space-Physics-Learning-Notes/